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Two unidirectionally coupled external cavity semiconductor lasers showing chaotic intensity fluctuations are
studied by numerically solving the Lang-Kobayashi model equations @IEEE J. Quantum Electron. QE-16, 347
~1980!#. The systems are shown to synchronize when operating in the regime of low-frequency fluctuations,
which is characterized by a very high-dimensional (d.150) attractor. The influence of parameter differences
between the two lasers on the synchronization quality is investigated. @S1063-651X~98!02512-4#

PACS number~s!: 05.45.1b, 42.55.Px, 42.65.Sf

I. INTRODUCTION

Synchronization phenomena are of fundamental impor-
tance for many physical, biological, and technical systems.
Since the pioneering work by Fujisaka and Yamada @1#, Pik-
ovsky @2#, and Afraimovich, Verichev, and Rabinovich @3#, it
has been known that even chaotic systems may synchronize.
This aspect of nonlinear dynamics became an issue of great
interest when Pecora and Carroll demonstrated synchroniza-
tion of unidirectionally coupled chaotic systems @4# and sug-
gested potential applications in communication systems. Ex-
amples of encoding methods based on chaos synchronization
were presented in Ref. @5# using electronic circuits. Since
many modern communication devices are optoelectronic or
all optical, in this paper we address the question of chaos
synchronization of unidirectionally coupled laser systems.
Synchronization of chaotic lasers has been shown experi-
mentally and numerically for Nd:YAG and CO2 lasers
~where YAG denotes yttrium aluminum garnet! @6#. Re-
cently, synchronization of chaotic erbium-doped fiber ring
lasers has been shown experimentally and numerically @7#.
Of special interest in optical communication, however, is the
semiconductor laser ~SL!, mainly due to its size and its pos-
sibility to be easily modulated @8#. A communication scheme
based on synchronization of chaotic laser diodes with
electro-optical feedback has recently been implemented ex-
perimentally @9#.

External cavity semiconductor lasers ~ECSLs! have been
a subject of extensive research @10# during the past 15 years
because of the importance of optical feedback phenomena in
technical applications such as optical data storage or optical
fiber communications. In most of these cases, one tries to
avoid the effects of optical feedback. A typical effect due to
feedback are low-frequency fluctuations ~LFF’s!, which can
be observed for moderate feedback and low pump current.
This phenomenon has attracted considerable interest during
the past few years. In particular, the question whether the
underlying dynamics is ~mainly! a stochastic process or gov-
erned by a chaotic attractor has been discussed very contro-
versially @11–14#. The numerical simulations presented in
Sec. II, which are based on deterministic model equations,
show that the LFF dynamics correspond to a very high-

dimensional chaotic attractor. This observation, together
with recent experimental results @15# corroborating the deter-
ministic model, indicates that LFFs are essentially a hyper-
chaotic deterministic process. Because of the high-
dimensional attractor, the LFF signal is very difficult to
distinguish from a stochastic signal.

In the following sections synchronization of ECSLs in the
LFF regime is investigated by numerically solving the usual
rate equations. Synchronization of ECSLs has previously
been studied numerically using different coupling schemes
@16,17#. The synchronization scheme employed in our simu-
lations is similar to but different from that used in Ref. @16#.
In particular, we consider a coupling that in principle allows
perfect synchronization and also works if the driven laser
does not possess an external cavity, which makes it easier to
implement the scheme experimentally. Furthermore, the ef-
fects of parameter mismatch between both coupled lasers are
studied in terms of unstable cw solutions embedded in the
chaotic drive attractor.

II. HYPERCHAOTIC LASER DYNAMICS

The schematic setup of an ECSL is shown in Fig. 1. Light
from the SL is reflected by the mirror and reinjected into the
laser cavity.

To model the first ECSL, we use the well-known Lang-
Kobayashi equations @18# for the complex electric field am-
plitude E(t) ~just behind the right laser facet! and the carrier
number N(t). These equations are generally considered to
give a valid approximation of a single-mode SL with weak to
moderate optical feedback from an external resonator. Writ-
ing E(t)5E0(t)exp$i@v0t1f(t)#%, splitting the complex
equation for E(t) into two real ones for the real amplitude
E0(t) and the slowly varying phase f(t), and using the car-
rier number above the value for the solitary SL ~without an
external resonator!, n(t)5N(t)2N sol , these equations read
@19,13#
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FIG. 1. Schematic setup of an external cavity semiconductor

laser ~SL, semiconductor laser; M, mirror!.
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2E0~ t !

1kE0~ t2t !cos@v0t1f~ t !2f~ t2t !# , ~1!
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f~ t !5

1

2
aGNn~ t !2k

E0~ t2t !

E0~ t !

3sin@v0t1f~ t !2f~ t2t !# , ~2!

d

dt
n~ t !5~p21 !J th2gn~ t !2@G1GNn~ t !#E0

2~ t !, ~3!

where we have included the average spontaneous emission
rate Csp . The exact value of the angular frequency v0 of the
solitary laser is found to be of no importance for the quali-
tative results. We have chosen a value corresponding to a red
laser diode. k is the feedback rate and pJ th is the pump
current in units of the electron charge, where J th5gNsol is
the threshold value of the solitary laser. The other parameters
are explained in Table I; the values are taken from Ref. @13#.

Equations ~1!–~3! include delay differential equations.
We used a fourth-order Runge-Kutta-Fehlberg integrator and
a sixth-order Hermite interpolation scheme @20# for all nu-
merical calculations presented in this paper. Results are
shown in Fig. 2~a! for k51010 s21 and in Figs. 2~b! and
2~c! for k51011 s21. In the latter case, the intensity break-
downs known as LFFs as well as the picosecond pulses
@13,15# are observed.

In order to estimate the dimension of the underlying at-
tractor a method introduced by Farmer @21# is used to calcu-
late the largest Lyapunov exponents of the infinite-
dimensional system. The ten largest Lyapunov exponents as
a function of the feedback rate k are shown in Fig. 3~a! for
108 s21<k<109 s21 and in Fig. 3~b! for 109 s21<k
<1011 s21. As can be seen, the system is hyperchaotic for
both values k51010 and 1011 s21, which were used to cal-
culate the time series shown in Fig. 2.

In order to characterize the dynamics of the LFFs in more
detail the spectrum of the 150 largest Lyapunov exponents is
shown in Fig. 4 for k51011 s21. As can be seen, the first
150 exponents are positive or vanish. The Lyapunov dimen-
sion of the LFF attractor is thus larger than 150.

III. UNIDIRECTIONALLY COUPLED
SEMICONDUCTOR LASERS

The synchronization arrangement assumed for the simu-
lations presented in this paper is shown in Fig. 5. It consists
of two external cavity semiconductor lasers that are coupled
unidirectionally via an optical diode, which can be realized
experimentally using a Faraday isolator. In a real experimen-
tal situation, variable attenuators would be necessary to con-
trol feedback and coupling strengths. Coherent light from the
first external cavity SL, the drive system, is injected into the

TABLE I. Parameters used in the simulations. Values are taken
from Ref. @13#.

solitary laser carrier number Nsol 1.7073108

differential optical gain GN 2.1423104 s21

external cavity round-trip time t 10 ns
linewidth enhancement factor a 5.0
carrier decay rate g 0.909 ns21

cavity decay rate G 0.357 ps21

pump current relative to J th p 1.02
wavelength 2pc/v0 635 nm
spontaneous emission rate Csp 1025 s21

FIG. 2. Dynamics of the ECSL for ~a! k51010 s21 and ~b! and
~c! k51011 s21. Note the different scales of the axes.

FIG. 3. Ten largest Lyapunov exponents l i of the ECSL for
different values of the feedback rate k . For k.43108 s21 the
system is chaotic with an increasing number of positive Lyapunov
exponents. Note the log-log scale in ~b!.
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second external cavity SL, the response system.
The light that is injected into the second system through

coupling is included in the equations in a way similar to the
light coming from the external resonator. This approach is
widely used to describe the effects of coherent light injection
into semiconductor lasers @22#. The equations for the second
system thus read

d

dt
Ẽ0~ t !5

1

2
GNñ~ t !Ẽ0~ t !1

Cspg@Nsol1 ñ~ t !#

2Ẽ0~ t !
1k̃Ẽ0~ t2t !

3cos@v0t1f̃~ t !2f̃~ t2t !#

1sE0~ t2tc!cos@v0tc1f̃~ t !2f~ t2tc!# , ~4!

d

dt
f̃~ t !5

1

2
aGNñ~ t !2k̃

Ẽ0~ t2t !

Ẽ0~ t !
sin@v0t1f̃~ t !2f̃~ t2t !#

2s
E0~ t2tc!

Ẽ0~ t !
sin@v0tc1f̃~ t !2f~ t2tc!# , ~5!

d

dt
ñ~ t !5~p21 !J th2g ñ~ t !2@G1GNñ~ t !#Ẽ0

2~ t !, ~6!

where s is the coupling strength and tc is the time the light
needs to travel from the right facet of the first SL to the right
facet of the second one. Note the difference between
E0(t),f(t) and Ẽ0(t),f̃(t), describing the electric fields in
the drive and the response lasers, respectively.

Synchronization is possible if there exists a solution of
Eqs. ~1!–~3! and ~4!–~6! with

Ẽ0~ t !5E0~ t2Dt !,

f̃~ t !5f~ t2Dt !2v0Dt ~mod 2p !,

ñ~ t !5n~ t2Dt !,

where Dt5tc2t accounts for the time delay of the synchro-
nization introduced through tc . A synchronous solution ex-
ists if

k5k̃1s . ~7!

This condition can be realized by adjusting the coupling and
feedback strengths. Equation ~7! includes the possibility of
the response system consisting of a solitary SL, i.e., k̃
50 s21; in this case the feedback strength of the first sys-
tem and the coupling strength have to be equal, k5s .

IV. SYNCHRONIZATION OF IDENTICAL LASERS

Equation ~7! provides a necessary condition for synchro-
nization; it does not tell, however, anything about the stabil-
ity of the synchronized solution. Therefore, Eqs. ~1!–~3! and
~4!–~6!, which include delay differential equations, have to
be solved numerically.

Figure 6 shows the results for k51011 s21, k̃
51010 s21, and s5931010 s21. For this feedback
strength the drive laser is in the LFF regime @13#, while the

FIG. 4. Spectrum of the 150 largest Lyapunov exponents l i for
the LFF attractor (k51011 s21).

FIG. 5. Synchronization arrangement ~SL, semiconductor laser;
M, mirror; BS, beam splitter; OD, optical diode!.

FIG. 6. Synchronization of drive and response lasers in the LFF

regime. Plotted are the electric field amplitudes E0(t) and Ẽ0(t) of
drive and response, respectively, and their normalized difference

DE0(t)5uẼ0(t)2E0(t2Dt)u/^E0(t)&. Due to time delays the in-

tensity signal Ẽ0(t) of the response laser is shifted in time with
respect to the drive by Dt5tc2t51.058 3331027 s510.5833t .
The parameters of the lasers are given in Table I and are assumed to
be exactly the same for both systems with a coupling given by k

51011 s21, k̃51010 s21, and s5931010 s21.
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response laser is in another hyperchaotic state without cou-
pling ~compare Figs. 2 and 3!. Plotted are the electric field
amplitudes E0(t) and Ẽ0(t) for the drive and the response
laser, respectively, as well as the synchronization error,
which is defined as

DE0~ t !5

uẼ0~ t !2E0~ t2Dt !u

^E0~ t !&
, ~8!

where ^E0(t)& is the temporal average of the electric field
amplitude of the drive laser.

At t525t , the coupling is switched on. Synchronization
occurs after some transient time. The electric field amplitude
of the response laser then follows the amplitude of the drive
laser with a time delay of Dt5tc2t , which is taken into
account in the definition ~8! of the synchronization error. As
can be seen from Fig. 6, nearly perfect synchronization is
achieved. Similar results have been obtained for the case of a
response laser without an external resonator (k̃50 s21),
with the difference that shorter transient times are observed
before perfect synchronization occurs.

V. SYNCHRONIZATION OF NONIDENTICAL LASERS

Since in practice no lasers are identical, those parameters
of the response laser that cannot be adjusted ~i.e., GN , a , g ,
G , and Csp) have been varied randomly within 1.0% differ-
ence from the drive laser values. Figure 7 shows a typical
result. As expected, no perfect synchronization is achieved,
but over long times the systems synchronize in a less perfect
way. During the intensity breakdowns, however, the systems
desynchronize. Synchronization is regained when the electric
field amplitude rises again. This can also be seen in Fig. 8,
where the amplitude Ẽ0(t) of the response laser is plotted vs

the amplitude E0(t2Dt) of the driving laser shifted in time.
Perfect synchronization would lead to a motion along the
diagonal, but here deviations ~‘‘excursions’’! occur mainly
for small values of the driving amplitude E0 .

The desynchronization during the intensity breakdowns
does not affect their joint occurrence. Figure 9 shows the
time traces of the intensity P(t)5E0

2(t) that would be ob-
served in an experimental situation using a photodiode with
finite detection time; the original amplitude traces from Fig.
7 have been squared and averaged over 5 ns. On a ‘‘mac-

FIG. 7. Synchronization of drive and response systems with

slightly different parameters for k51011 s21, k̃51010 s21, and
s5931010 s21 ~compare Fig. 6!.

FIG. 8. Response amplitude Ẽ0(t) vs drive amplitude E0(t
2Dt) shifted in time. For large E0 synchronized dynamics along
the diagonal occurs, but during intensity breakdowns of the drive
both lasers desynchronize. The parameters are the same as in Fig. 7.

FIG. 9. Same parameters as in Fig. 7 but intensities P(t)
5E0

2(t) averaged over 5 ns to take into account finite detection
time. Note that P(t2Dt) is plotted including the time shift Dt to
demonstrate the simultaneous occurrences of the intensity break-
downs.
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roscopic’’ scale the systems synchronize quite well, includ-
ing the occurrence of the intensity breakdowns. Their inten-
sities differ, however, on a ‘‘microscopic’’ scale.

VI. UNSTABLE PERIODIC ORBITS

Short events of desynchronization such as those shown in
Fig. 7 are typical for weakly coupled systems in the presence
of noise or parameter mismatch @23#. The origin of this so-
called bubbling phenomenon are unstable invariant subsets
@such as unstable fixed points ~UFPs! or unstable periodic
orbits ~UPOs!# of the drive attractor that fail to entrain the
corresponding fixed point or periodic orbit of the response
system. When driven with one of these UFPs or UPOs the
response system does not synchronize, but oscillates in a
different way from the drive. In the joint state space of drive
and response these UFPs and UPOs are transversally un-
stable, i.e., in their vicinity the manifold containing the syn-
chronized dynamics is repelling and not attracting. When-
ever an almost synchronized trajectory comes close to a
transversally unstable UFP or UPO it is repelled from the
synchronization manifold and synchronization breaks down
for a short period of time until the trajectory ~re!enters a
region where the synchronization manifold is attracting
again. This mechanism explains also the intermittent charac-
ter of the desynchronization bursts shown in Fig. 7. In order
to investigate this source of synchronization breakdown for
the coupled laser system we have studied the transversal
~in!stability of unstable fixed points ~i.e., cw solutions!. A
stationary ~cw! solution of Eqs. ~1!–~3! has a complex elec-
tric field

E~ t !5E0
s exp~ ivst1f0!

and a carrier number

n~ t !5ns,

where vs
5v01Dv is the angular light frequency that is

shifted from the value v0 of the solitary laser by an amount
Dv . For the slowly varying phase f(t) it follows that
f(t)5Dvt1f0 , so that the phase difference h(t)5f(t)
2f(t2t) is constant,

hs
5Dvt .

Substituting E0
s , ns, and hs in Eq. ~1! and neglecting spon-

taneous emission, we obtain

ns
52

2k

GN
cos~v0t1hs!.

Using this in Eq. ~2!, we obtain an equation for hs,

hs
1ktA11a2sin~v0t1hs

1arctana !50, ~9!

which can only be solved numerically @8#. Solutions of Eq.
~9! with positive derivative

11ktA11a2cos~v0t1hs
1arctana !.0

have been shown to be unstable foci and are generally re-
ferred to as external cavity modes, while solutions with nega-

tive derivative are saddle points and are called antimodes
@10#. From Eq. ~3! we finally obtain

E0
s
5A~p21 !J th2gns

G1GNns
. ~10!

The process of LFFs has been explained in the following
way @12,13#. During the intensity buildup phase, the system
oscillates in the vicinity of the ~unstable! foci. From time to
time, it moves from one focus to the next, preferably in the
direction of decreasing values of hs. At some point, the sys-
tem comes too close to a saddle point and is carried away by
its unstable manifold. This leads to an intensity breakdown,
after which the buildup phase recommences.

To investigate the hypothesis that unstable periodic orbits
might be the reason for the loss of synchronization during
the intensity breakdowns, we used stationary solutions
@which are fixed points of the system (E0 ,h ,n)] of the drive
system to drive an identical response system. For this task,
the value of hs was calculated by numerically solving Eq. ~9!

and then the value for E0
s from Eq. ~10! and the phase

f(t)5hst/t were used as drive variables in Eqs. ~4!–~6!.
The parameters were the same as in Sec. IV. The systems
synchronize when an unstable focus is used to drive the re-
sponse system, as can be seen in Fig. 10~a!. When a saddle
point is used as a drive, however, no synchronization is
achieved @cf. Fig. 10~b!#. In this case the response system
also generates cw output, but at a different value of the elec-
tric field amplitude Ẽ0(t).

When the system comes too close to a saddle point, two
independent events take place. First, the average intensity of
the drive system breaks down and the value of the inversion
n(t) increases very rapidly due to the saddle node instability.
Second, the synchronization between the drive and the re-
sponse systems is lost because of the desynchronizing prop-
erty of the saddle point. When the drive system has left the
vicinity of the saddle point, synchronization is regained.

FIG. 10. Electric field amplitudes of drive ~dashed line! and
response ~solid line! lasers when the response system is driven with
~a! an external cavity mode and ~b! an antimode, respectively. At
t510t the coupling is switched on. The parameters are the same as
in Fig. 6.
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Since the unstable foci do not have that desynchronizing
property, they are of no danger for the synchronization. This
mechanism also explains the occurrence of desynchroniza-
tion events at low drive intensities P ~see Figs. 7 and 8!

because all unstable cw solutions have amplitudes E0
s

,3 (arbitrary units), as can be computed using Eq. ~10!.

VII. CONCLUSION

In this paper we have presented numerical simulations of
synchronizing hyperchaotic semiconductor lasers that are
unidirectionally coupled by their electric fields. For perfectly
identical lasers the synchronization error converges to zero
very rapidly, but ~slight! parameter mismatch leads to inter-
mittent breakdown of the synchronization, i.e., the difference
of the electric field amplitudes of drive and response lasers
becomes rather large for short periods of time. The main
reason for these desynchronization events is the existence of
transversally unstable cw solutions that are embedded in the
chaotic attractor. Although these results indicate that one
may not obtain ‘‘high-quality’’ synchronization in experi-

mental implementations ~where noise and parameter mis-
match are unavoidable!, such a setup nevertheless may be
useful for practical applications because the synchronization
breakdowns coincide with intensity breakdowns. Therefore,
the envelope of the intensity fluctations of the driving laser is
well reproduced by the response laser even in the case of
parameter mismatch and despite the very high dimension
(d.150) of the underlying chaotic attractor. If this envelope
is of importance ~for example, in a chaos-based communica-
tion system! then the ‘‘low-quality’’ synchronization ob-
served with parameter mismatch may be sufficient.

ACKNOWLEDGMENTS

We thank L. Kocarev, L. Junge, R. Roy, H. D. I. Abar-
banel, N. Rulkov, M. Sushchick, and our colleagues and the
technical staff of the Third Physical Institute for stimulating
discussions on chaos synchronization and support. This work
was supported by the Deutsche Forschungsgemeinschaft
~Project No. Pa 643/1-1!.

@1# H. Fujisaka and T. Yamada, Prog. Theor. Phys. 69, 32 ~1983!;
70, 1240 ~1983!.

@2# A. S. Pikovsky, Z. Phys. B 55, 149 ~1984!.
@3# V. S. Afraimovich, N. N. Verichev, and M. I. Rabinovich,

Radiophys. Quantum Electron. 29, 795 ~1986!.
@4# L. M. Pecora and T. L. Carroll, Phys. Rev. Lett. 64, 821

~1990!.
@5# K. M. Cuomo and A. V. Oppenheim, Phys. Rev. Lett. 71, 65

~1993!; L. Kocarev and U. Parlitz, ibid. 74, 5028 ~1995!; U.
Parlitz, L. Kocarev, T. Stojanovski, and H. Preckel, Phys. Rev.
E 53, 4351 ~1996!; M. de Sousa Vieira, P. Khoury, A. J. Li-
chtenberg, M. A. Lieberman, W. Wonchoba, J. Gullicksen, J.
Y. Huang, R. Sherman, and M. Steinberg, Int. J. Bifurcation
Chaos Appl. Sci. Eng. 2, 645 ~1992!; N. F. Rulkov, A. R.
Volkovskii, A. Rodriguez-Lozano, E. Del Rio, and M. G. Vel-
garde, ibid. 2, 669 ~1992!; L. Kocarev, K. S. Halle, K. Eckert,
L. O. Chua, and U. Parlitz, ibid. 2, 709 ~1992!.

@6# R. Roy and K. S. Thornburg, Phys. Rev. Lett. 72, 2009 ~1994!;
T. Sugawara, M. Tachikawa, T. Tsukamoto, and T. Shimizu,
ibid. 72, 3502 ~1994!; P. Colet and R. Roy, Opt. Lett. 19, 2056
~1994!.

@7# G. D. VanWiggeren and R. Roy, Science 279, 1198 ~1998!; H.
D. I. Abarbanel and M. B. Kennel, Phys. Rev. Lett. 80, 3153
~1998!.

@8# G. P. Agrawal and N. K. Dutta, Semiconductor Lasers, 2nd ed.
~Van Nostrand Reinhold, New York, 1993!,

@9# J.-P. Goedgebuer, L. Larger, and H. Porte, Phys. Rev. Lett. 80,
2249 ~1998!.

@10# G. H. M. van Tartwijk and D. Lenstra, Quantum Semiclassic.
Opt. 7, 87 ~1995!.
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