
An Extensible Scene Graph Library for Teaching
Computer Graphics along the Programmable Pipeline∗

Volker Ahlers
University of Applied Sciences and Arts Hannover

Faculty IV, Dept. of Computer Science
Ricklinger Stadtweg 120, 30459 Hannover, Germany

volker.ahlers@hs-hannover.de

ABSTRACT
Computer graphics is a subject which is typically enjoyed
by students and which has the potential to attract pupils
to consider studying computer science. Although the pro-
gramming methods used by computer graphics have signif-
icantly changed in recent years due to the integration of
programmable shaders into the graphics rendering pipeline,
a lot of computer graphics courses still start with the fixed-
function pipeline. In view of future applicability, however,
it is desirable to teach students modern concepts of com-
puter graphics from the beginning. One problem with teach-
ing shader-based computer graphics is that a lot of techni-
cal tasks lie in the hand of the programmer: loading and
compiling shader programs, managing buffer objects, defin-
ing transformations by means of matrices, etc. This poster
presents a scene graph library which is fully based on the
programmable rendering pipeline. It uses the OpenGL 3.2
core profile, which does not allow deprecated fixed-function
functionality. The teaching approach combines the high-
level abstraction of a scene graph with the low-level pro-
gramming of shader cores, which are attributed to scene
graph nodes. The presented scene graph library has a sim-
ple and clear structure and is extensible in order to let stu-
dents implement advanced concepts taught in the lecture,
like shadows or particle systems. Finally, the poster presents
code samples, results of student projects, and student eval-
uation results.

Categories and Subject Descriptors
I.3.4 [Computer Graphics]: Graphics Utilities;
K.3.2 [Computers and Education]: Computer and
Information Science Education

Keywords
Computer Graphics; Scene Graph; Rendering Pipeline;
Programmable Shaders; Software Library; Laboratory

∗Poster proposal, revision January 2, 2014

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGCSE’14 March 5–8, 2014, Atlanta, Georgia, USA

1. SIGNIFICANCE AND RELEVANCE OF
THE TOPIC

Computer graphics is a classic course of many computer
science curricula which is typically enjoyed by students. Video
games and animated feature films often arouse interest in
the subject, and visual 3D results of project-oriented labo-
ratory classes are a welcome diversion from more abstract
topics of other courses. In consequence, computer graphics
is well-suited to attract pupils to consider studyding com-
puter science.

On the technical side, the programming methods used by
computer graphics have changed a lot in recent years due to
the integration of programmable shaders into the graphics
rendering pipeline. Since Direct3D 9.0 (released 2002) and
OpenGL 2.0 (2004) it is possible to program certain pipeline
stages in high-level shading languages. Since Direct3D 10.0
(2007) and OpenGL 3.0 (2008) the fixed-function pipeline is
declared obsolete or at least deprecated [4, 8]. Nevertheless,
a lot of computer graphics courses still start with the fixed-
function pipeline, mainly because it is easier to obtain first
results without having to learn how to program shaders. If
shaders are treated at all, they are introduced as a means
to achieve special effects. For OpenGL, this is in part sup-
ported by the compatibility profile which still exists in lat-
est OpenGL versions (but not in newer developments like
OpenGL ES for embedded systems and WebGL). In view of
future applicability, however, it is desirable to teach students
modern concepts of computer graphics from the beginning.
As a side effect, programmable shaders provide insight into
the hardware of graphics processing units.

One problem with teaching shader-based computer graph-
ics is that a lot of technical and potentially boring tasks
lie in the hand of the programmer: loading and compiling
shader programs, storing and managing buffer objects, defin-
ing transformations by means of matrices and linear algebra
operations, etc. Existing approaches thus provide libraries
for facilitating some of these tasks [2, 1, 3].

2. CONTENT OF THE POSTER
The poster presents a scene graph library which is fully

based on the programmable rendering pipeline. It uses the
OpenGL 3.2 core profile, which does not allow deprecated
fixed-function functionality [9]. The teaching approach com-
bines the high-level abstraction of a scene graph with the
low-level programming of shader cores, which are attributed
to scene graph nodes (cf. figs. 1 and 2).

Scene graphs as high-level graphics approaches allow struc-



Figure 1: Sample scene graph consisting of nodes and cores.

Figure 2: Sample scene with pixel-based Phong
shading corresponding to scene graph of fig. 1.

tured geometric modeling, make use of various design pat-
terns, and offer a possibility to review and apply tree and
graph data structures and algorithms. Existing scene graph
libraries like OpenSceneGraph [7], however, are very com-
plex and difficult to comprehend by students. A further
danger in project-oriented laboratory classes is that students
may look for existing code in the internet instead of trying
to find their own solutions.

The presented scene graph library has a simple and clear
structure that can be explained in a 90 minute lecture unit.
It is extensible in order to let students implement advanced
concepts taught in the lecture, like shadows or particle sys-
tems. It uses modern technologies including C++11, GLFW
[5], and GLM [6]. Finally, the poster will present code sam-
ples, results of student projects, and student evaluation re-
sults. The code of the scene graph library will be published
as an open-source project.

3. ACKNOWLEDGMENTS
The author gratefully acknowledges fruitful discussions

with Ingo Ginkel, Frauke Sprengel, Henrik Tramberend, and
numerous students of his computer graphics classes.

4. REFERENCES
[1] E. Angel. Teaching computer graphics starting with

shader-based OpenGL. In P. Cozzi and C. Riccio,
editors, OpenGL Insights, pages 3–16. CRC Press, Boca
Raton, FL, 2012.

[2] E. Angel and D. Shreiner. Teaching a shader-based
introduction to computer graphics. IEEE Computer
Graphics and Applications, 31(2):9–13, 2011.

[3] M. Bailey. Transitioning students to post-deprecation
OpenGL. In P. Cozzi and C. Riccio, editors, OpenGL
Insights, pages 17–26. CRC Press, Boca Raton, FL,
2012.

[4] D. Blythe. The Direct3D 10 system. ACM Transactions
on Graphics, 25(3):724–734, 2006.

[5] GLFW. Retrieved November 20, 2013 from
http://www.glfw.org/.

[6] GLM: OpenGL Mathematics. Retrieved November 20,
2013 from http://glm.g-truc.net/.

[7] OpenSceneGraph. Retrieved November 20, 2013 from
http://www.openscenegraph.org/.

[8] M. Segal and K. Akeley. The OpenGL Graphics
System: A Specification (Version 3.0). Technical report,
Khronos Group, 2008. Retrieved November 20, 2013
from http://www.opengl.org/registry/doc/

glspec30.20080923.pdf.

[9] M. Segal and K. Akeley. The OpenGL Graphics
System: A Specification (Version 3.2 (Core Profile)).
Technical report, Khronos Group, 2009. Retrieved
November 20, 2013 from http://www.opengl.org/

registry/doc/glspec32.core.20091207.pdf.


