Module name:	Visualization Techniques
Abbreviation:	VIS
Study semester:	2 nd semester (SS), frequency: once a year
Responsible for module:	Volker Ahlers
Teaching staff:	Volker Ahlers, Frauke Sprengel
Language:	German or English
Place in curriculum:	Master, Compulsory subject, 2 nd semester
Teaching methods/SWS:	2 SWS lecture with approx. 30 students
	2 SWS exercise with approx. 15 students
Work required:	Lecture = 34 h
	Exercise = 34 h
Cradit mainte.	Own study time = 112 h
Credit points:	6 CP (= 180 h)
Prerequisites acc. to exam regulations:	None
Recommended prerequisites:	Computer Vision
Learning goals:	Algorithmic and mathematical skills: Knowledge of the basic principles of human-computer interaction (HCI); understanding of visualization algorithms; knowledge of different types of data representation; critical assessment of visualizations.
	Analysis, design and realization skills: Analysis of data sets and visualization requirements; design and realization of visualization solutions. Technological skills: Knowledge of the use of visualization techniques in different areas of application
	Methodological skills: Knowledge of the opportunities, the benefits and the limits of the use of visualization techniques
Contents:	Techniques used to visualize numerical and abstract data Basic principles: Visual perception, human-computer interaction (HCI), color models, data representation, visualization pipeline, applications
	Scalar data: Line, bar and pie graphs, color coding, contour lines, altitude profiles
	Vector fields: Glyphs, warping, flow lines, flow paths
	Volume data: Isosurfaces, volume rendering, ray casting, splatting Information visualization: Mapping abstract data and relationships, graph drawing Visualization software: Current library and graphical development environments, use of real data
Examinations:	Examination (written or oral examination) and experimental work
Media forms:	Lecture: Presentation, board, examples, discussion Exercise: Independent task-solving in groups of 2, project work with presentation, assessment and discussion of solutions
Literature:	Lecture notes Telea, A.C.: Data Visualization. A K Peters, latest edition. Hansen, C.D., C.R. Johnson (Hg.): The Visualization Handbook. Elsevier Butterworth-Heinemann, latest edition.